
Modeling of Tree Topology Using Coq
Benjamin Collet
M1 MoSIG, UGA
Grenoble, France

benjamin.collet@etu.univ-grenoble-alpes.fr

Supervised by: Karine Altisen, Pierre Corbineau and Stéphane Devismes.
Collaboration with Andrey Sosnin.

I understand what plagiarism entails and I declare that this report
is my own, original work.
Name, date and signature:

Abstract
During this internship, we have designed a tree
topology model using the proof assistant Coq. This
topology will be used inside a framework for cer-
tified proofs of self-stabilizing distributed algo-
rithms. We first define a correct and complete
model of the topology in Coq. Then we refine
this model by adding definitions and proving triv-
ial properties on these definitions. We also discuss
about the relevance of our model.

1 Introduction
A proof assistant is a program that helps writing and veri-
fying mathematical proofs by mechanically checking asser-
tions. Coq [Coq, 1999; Bertot and Castéran, 2004] is the
proof assistant developed at INRIA, with the participation
of CNRS and other french research institutions. It has been
used to prove some famous theorems, including the four color
theorem [Gonthier, 2008]. Coq is based on the Calculus of
Constructions, developed by Coquand and Huet in [1988],
more precisely, on a variant that includes inductive types, the
Calculus of Inductive Constructions [Paulin-Mohring, 1993].
The Calculus of Constructions can be seen as an extension of
the Curry-Howard isomorphism which makes a strong con-
nection between proofs and programs, and between theorems
and types.

A self-stabilizing algorithm is a distributed algorithm that
can support any finite number of transient faults, and go back
to a correct behaviour after a finite amount of time. This no-
tion was introduced by Dijkstra in [1974], since then, more
and more complex algorithms have been proposed. As al-
gorithms gain in complexity, proofs of their correctness and
complexity are trickier to establish. These proofs, written by
hand and based on informal reasoning, potentially contain er-
rors due to arguments not being perfectly clear, as explained
by Lamport in [2012].

It is in this context that the framework PADEC (Preuves
d’Algorithmes Distribués En Coq) is developed [Altisen et
al., 2016]. PADEC is a software composed of specifications

and proofs written in Coq. This framework helps building
certified proofs of self-stabilizing algorithms that are based
on the locally-shared memory model with composite atomic-
ity [Dijkstra, 1974], the most commonly used model in the
self-stabilizing area.

Usually, distributed algorithms are described for a specific
shape of network, e.g. rings, trees, grids, etc. The subject of
this internship was to design one topology. The ring is al-
ready implemented in the framework, I used it as example for
designing trees. The main task was to define a specification;
even if this was an original work, I was guided by Pierre. Dif-
ficulties of this task will be discussed in the next paragraphs.

The next step was to ensure that the specification was ac-
curate and usable. This was achieved by adding definitions
(e.g. ancestor, depth, leaf. . .) and proving trivial properties
about these definitions. In addition to confirming the design,
these definitions and properties will be useful when using the
topology, as they can be part of more complex proofs. I was
mostly autonomous in the choice of definition and property to
add, except for a couple of target properties that are needed
for some proofs.

The goal we want to achieve is to provide an abstract spec-
ification of trees. The specification, written in Coq, is a set of
symbols, functions and predicates, with some formulas that
must be satisfied. This specification leads to an infinite set of
logical consequences that composes a theory of trees.

Our specification must be necessary and sufficient. Neces-
sary means that all the necessary constraints are in the spec-
ification, that way, only trees can be accepted by the specifi-
cation. Sufficient means that the specification can accept any
tree. In practice, it consists in finding the right balance be-
tween a light specification that accepts all the trees but strong
enough to reject everything else.

It is harder to provide all the necessary properties than en-
sure that they are sufficient. As we usually ponder about our
specification with trees in mind, finding a model that repre-
sents a tree, but does not fit in the theory is easier than to think
of something that is accepted by the theory, but is not a tree.

The rest of this paper is organized as follows. Section 2
analyzes the existing solutions, and derives constraints. Sec-
tion 3 describes how we have modeled the tree topology and
definitions that come with it. In Section 4, we discuss about
some elements of the definition described in the previous sec-
tion. We make concluding remarks in Section 5.

2 Preparatory work
2.1 Preparatory study: the Ring case
Prior to this internship, a directed ring topology was already
defined. Because rings are simple, they where used as a proof
of concept and as reference for other topologies, e.g. tree or
grid. Intuitively, a ring is a graph composed of one cycle, in
which every node has a unique successor. By applying the
successor operation a certain finite amount of time (the size
of the ring), we eventually get back to the initial node.

The specification of the ring in PADEC is made of three
functions. Succ: A → A, which for each node, as-
sociates its successor. Pred: A → A, which does the
same for its predecessor. And finally, Dist: A → A →
nat, which for each pair of nodes, gives back the distance
between the two nodes, following successors direction.

Once these functions where defined, predicates that link
Pred, Succ and Dist have been added. For instance, we
have Dist x (Succ y) = 1 + Dist x y.

The distance, expressed as a natural number, is the key
point of that specification, it makes easy induction schema.
As a reminder, induction proofs are done in two steps, the
base case, and the induction step. In a ring, an induction rea-
soning for some property P on nodes, will look like that:

• base case: for a given node x in the ring, (P x) is valid;

• induction step: for every node y in the ring, (P y) is
valid implies that (P (Succ y)) is also valid.

If the base case and the induction step can be proved, then
for every z in the ring, the property (P z) holds. Natural
numbers help us during the induction step, as Dist from x
give a unique result for each y. This allows to report a lot of
the reasoning onto naturals, which are easy to manipulate.

Many usual properties about rings can also be derived from
the definition, e.g. considering two nodes v and w, the dis-
tance from v to w is the same as the distance between their
respective successors.

This specification succeeds at representing every ring and
only rings. We can make this assertion with confidence as
usual properties have been proved, and the specification has
been instantiated with every ring based on Z/kZ. Unfortu-
nately, completeness cannot be certified inside Coq, as a con-
sequence of Gödel’s incompleteness theorems, that apply to
every theory that is complex enough to describe basic arith-
metic.

2.2 Functional constraints
Many definitions of trees exist in graph theory. One of the
most common is: a tree is a graph T = (V,E) such that the
graph is connected and |E| = |V | − 1. This definition makes
an undirected and unrooted tree. Because of the cardinalities,
this definition also implicitly makes the tree finite. Finiteness
of the tree is a property we want to keep, as we aim to describe
network topology. However, most algorithms require a rooted
tree, so we cannot use that definition.

Another definition would be: a tree is a graph T = (V,E)
such that each node has a unique parent, except a unique node
called “root”, with no parent. In order to avoid describing

a tree plus disconnected rings, the graph also needs to be
acyclic, or connected (one implying the other).

PADEC already contains a tree specification, that has been
used to represent spanning tree in proofs. This specification
uses the former definition (with the acyclic property), but ap-
pears to be difficult to use. Proofs on trees are usually done
using structural induction. However, structural induction is
not “built-in” in this specification, unlike in rings.

With the current specification, induction requires to prove
well-foundedness of the tree, and to perform proofs on it. A
binary relation on a set is called well-founded if all strictly
decreasing sequences are finite. For trees, it means that if
we follow a path from child to child, we will always en-
counter a leaf (a node without children) in a finite amount of
step, regardless of which child we chose at each step. While
Coq makes it possible to do induction based on well-founded
schema, induction-based reasoning on naturals are easier.

In this work, we present another specification of trees that
is also based on this definition. We keep the structural infor-
mation: each node has a unique parent, except for one root,
and we add a natural quantity to ease the use of proof by in-
duction, like for the rings. This quantity will also make the
graph connected, and thus, complete the definition.

2.3 Coq-related technicality
The replacement principle is widely use in interactive theo-
rem proving. It consist of replacing an expression by another
after having proved their equality. Equality is defined on a
type by a function eq (A:Type) (x:A): A → Prop,
and eq A x x should be true.

The default equality in Coq is the intentional equality,
sometimes call Leibniz equality. This is the equality of the
code in a λ-calculus context. For instance, 1 + 1 = 2 can be
written as (S 0)+(S 0) = S(S 0), which gives S((S 0)+0) =
S(S 0) and finally S(S 0) = S(S 0).

In the case of a function, it is the equality of the nor-
mal forms. Let’s try to prove that (fun x ⇒ x) =
(fun x ⇒ 0 + x). (fun x ⇒ x) is already in a
normal form. The normal form of (fun x ⇒ 0 + x) is
written (fun x ⇒ match 0 with 0 ⇒ x | ...
end), which can be simplified in (fun x ⇒ x). Both
expressions have the same normal form, so they are equal.

Now same question with (fun x ⇒ x + 0). This
time, the normal form is (fun x ⇒ match x with 0
⇒ 0 | S x’ ⇒ S (x’ + 0) end), and cannot be
reduced any further. While this function has the same images
as (fun x ⇒ x), we don’t have an equality according to
Coq. The equality on the images, that might be more suitable
in this case, is called extensional equality.

For every type where intentional equality is not satisfac-
tory, we can add an ad hoc equality. The resulting types,
equipped with an equality relation, are called setoids.

For simple types, the equality relation is an equivalence
relation (reflexive, symmetric and transitive). For more
complex type, sometimes, the equality is not reflexive any-
more. This is the case with the functions and the exten-
sional equality (equality of their image). Let’s consider
two function from type A to type B, named f and g. On
type A, we have the equality eqA and on type B, eqB. To

say that f and g are equal, we need to prove forall x
y, eqA x y → eqB (f x) (g y). Even in the case
where eqA and eqB are reflexive, we can have eqA x y
and not eqB (f x) (f y), e.g. f is the identity, eqA is
the equality modulo 2, and eqB is the Leibniz equality.

As non-reflexive equality prevents the substitution of an
expression by another, when the setoid relation is not reflex-
ive (partial equality relation), we restrict our reasoning to el-
ements for which we can prove the reflexivity. In the case of
functions, these elements are called compatible functions.

3 Definition of a Tree Topology
3.1 Construction of the nodes
Our model is a class Tree Topology that describes re-
lations between nodes that compose this topology. Nodes
are represented by a type A which is a setoid. Relations
between these nodes are defined as functions. The first
relation is the parent relation, represented by the function
Parent: A → option A. This is a partial function
since root does not have a parent.

Unfortunately, Coq only allows total functions, as it allows
a strong static type safety, which is really useful in the con-
text of mechanical proofs. In order to use partial functions, a
useful type to know is the polymorphic type option. Used
with the type A, an (option A) value can either hold None,
which usually indicates a non-significant result of a function,
or hold Some a where a is of type A. This way, we can have
partial functions, while Coq maintains its strong static type
safety.

The algorithms that the framework aim to prove, are sup-
pose to represent the real-world, where networks are of finite
size. To achieve finiteness, the solution retained was to add
the list of all the nodes in the tree, i.e. there exists a list such
that, for every node, this node is in that list. We discuss about
that list in the last paragraph of Section 4

From the function Parent and the list of all the nodes,
we can provide some definitions. By opposition to Parent,
a node v is the child of a node w if w is Parent of v.
Also, two nodes are called siblings if they share the same
parent. The list of children of a node can be build from
Parent and the list of all the nodes, and give the func-
tion Children: A → list A. If the list of children
is empty, then the node is a called a leaf.

3.2 Relations between the nodes
The second function is the distance to the low-
est common ancestor described by the function
Dist LCA: A → A → nat. The lowest common
ancestor (LCA) of two nodes v and w is defined as the
common ancestor of v and w that is the farthest from the
root. In Figure 1, the LCA of the nodes v and w is the node
‘b’. The Dist LCA from v to w is the distance from v to ‘b’,
so 1. We can note that this is not symmetric as Dist LCA
w v = 2.

Now that we have Dist LCA in addition to Parent and
the list of all the nodes, we can add some definitions. In order
to properly define a finite tree, a root must exist and be unique
(e.g. node ‘a’ in Figure 1). As the distance to the LCA is

a

b

v d

w f

Figure 1: An example.

defined for all pairs of nodes, a common ancestor of all nodes
must exists.

The depth of a node is defined as the distance to the root.
The height of a node is defined as the longest distance to a
descendant.

An ancestor v of a node w is a node where the property
Dist LCA v w = 0 holds. v is a LCA, and therefore an
ancestor (see Figure 2a). Note that this definition includes w
as an ancestor of itself. Conversely, a descendant v of a node
w is a node where Dist LCA w v = 0 (Figure 2b).

a

v

c d

w f

(a) v is an ancestor of w

a

w

v d

e f

(b) v is a descendant of w

Figure 2: Ancestor and descendant with respect to
Dist LCA.

Now that we have defined the functions Parent and
Dist LCA, and used them is some definitions, we need to
specify how they behave with respect to each other. Let’s con-
sider two nodes x and p such that Parent x = Some p,
then Dist LCA x p = 1 and Dist LCA p x = 0.

Let’s consider two other nodes v and w. If we replace the
first parameter, v, by its parent Pv, Dist LCA will decrease
of 1 (Figure 3a), except if already 0 (Figure 3b).

forall v w Pv, isParent Pv v ->
Dist_LCA Pv w = pred (Dist_LCA v w).

If we replace the second parameter, w, by its parent, Pw,
we face two cases. Either w is not an ancestor of v, so the
LCA does not change, and Dist LCA remains the same (Fig-
ure 3c).

forall v w Pw,
isParent Pw w -> ˜(isAncestor w v) ->

Dist_LCA v w = Dist_LCA v Pw.

Either w is an ancestor of v, so the new Dist LCA is the
distance to Pw, and we need to add 1 (Figure 3d).

forall v w Pw,
isParent Pw w -> isAncestor w v ->

Dist_LCA v w = 1 + Dist_LCA v Pw.

a

b

Pv

v

d

w f

(a) Parent of v

Pv

v

c d

w f

(b) Parent of v, when
Dist LCA v w = 0

a

b

v Pw

w f

(c) Parent of w

Pw

w

v d

e f

(d) Parent of w, when w is an-
cestor of v

Figure 3: How Dist LCA behaves.

3.3 Validation of the theory
To acknowledge the soundness of our specification, we need
to derive usual properties of the models we are describing.
For instance:
• By definition, the depth of the root is 0 and the height of

a leaf is 0.
• A leaf does not have children, it implies that is if v is a

leaf and also an ancestor of w, then w is equivalent to v
(n.b. our definition of ancestor includes the node itself).

forall v w,
isLeaf v -> isAncestor v w ->

v == w.

• The depth of a node is the depth of its parent plus 1,
except for the root as mentioned earlier.

forall v w,
isParent v w ->

Depth w = 1 + Depth v.

• The height of a node v is greater or equal to the height
of any of its children plus 1.

forall v w,
isParent v w ->

Height v >= 1 + (Height w).

From the distance to the LCA, we can define the
usual distance between two nodes, v and w, as the sum:
Dist LCA v w + Dist LCA w v. This distance is re-
flexive, symmetric and respects the triangle inequality.

As explain in Subsection 2.1, having Dist LCA expressed
as a natural number eases the use of proof by induction. In-
duction is useful to prove properties that are valid in a whole
part of the tree. We can define both downward and upward
induction.

Downward induction: Let P be a property that propagates
from any node to all of its children, then, if it holds for a
node v, by induction, it propagates to all descendants of
v, i.e. the subtree rooted in v. As a corollary, if P holds
for the root, then it holds for the whole tree.

Upward induction: Let Q be a property that propagates
from any node to its parent. If Q holds for a node w,
it hold for all ancestors of w, i.e. the path from w to the
root. As a corollary, if Q holds for all leafs, it holds for
the whole tree.

To gain confidence in the expressive power of our specifi-
cation, we also need to verify that it can represent any trees.
The usual method for this is to build a model that verifies
our specification from a model of another specification. As
we are basing our specification on an existing specification of
trees, we should also prove that they are equivalent. However,
both methods are complex and time consuming, and are not
in the scope of a two months internship.

4 Discussion about the model
The Parent operation induces a direction between nodes,
as a consequence, the resulting tree is a rooted tree. Also,
Parent is uniquely defined for any given node, so the model
cannot describe a polytree or any kind of directed acyclic
graph. In addition, only a unique path from a node to any
of its ancestor exists.
Dist LCA is defined for any pair of nodes, in other words,

there is a path between any pair of nodes. This prevents de-
scription of a forest as the graph described must be connected.
Also, Dist LCA yields a unique value, thus preventing cy-
cles. Indeed, for a node v to be an ancestor of one of its an-
cestor w, both Dist LCA v w and Dist LCA w v need
to be equal to 0, and this defines the equivalence between v
and w.

Together, the existence of a common ancestor and the unic-
ity of the path to it, ensures that it exists a unique path from a
node to another. This property itself is sufficient to properly
describe a tree.

The topology described in this paper will be used to help
the proof of distributed algorithms. These algorithms are
to be used in the context of finite networks. The solution
adopted was to add the list of all the nodes. Lists are finite in
Coq, which make the size of the topology finite too. This so-
lution is already used in the framework: the Network class,
also contains a list of all the nodes.

5 Conclusion
We proposed a specification of trees, in Coq, that can be
use inside the PADEC framework, as a network topology to
prove self-stabilizing distributed algorithms. This specifica-
tion needed to be accurate and usable. The specification is
made of operators that create nodes that populate the models,
and properties that describe relations between these nodes.
Finally, properties where added to ensure the specification ac-
cepts all trees and only trees.

At the time of the writing, the specification has been writ-
ten in Coq. Some of the usual properties of trees have been
proved. The others, with more complex proofs, are defined in
Coq, but admitted. Next step would have been to express the
different induction schemas. Overall, we are confident about
the results we have obtained during this internship and they
will be integrated inside PADEC.

References
[Altisen and Corbineau, 2016] Karine Altisen and Pierre

Corbineau. A framework for certified self-stabilization.
http://www-verimag.imag.fr/˜altisen/
PADEC/.

[Altisen et al., 2016] Karine Altisen, Pierre Corbineau, and
Stéphane Devismes. A framework for certified self-
stabilization. In Formal Techniques for Distributed Ob-
jects, Components, and Systems, pages 36–51, Cham,
2016. Springer International Publishing.

[Bertot and Castéran, 2004] Yves Bertot and Pierre
Castéran. Interactive Theorem Proving and Program
Development. Springer-Verlag Berlin Heidelberg, 2004.

[Coq, 1999] The Coq Proof Assistant. Reference manual.
https://coq.inria.fr/refman/.

[Coquand and Huet, 1988] Thierry Coquand and Gérard
Huet. The calculus of constructions. Information and
Computation, 76(2):95–120, 1988.

[Dijkstra, 1974] Edsger W. Dijkstra. Self-stabilizing systems
in spite of distributed control. Communications of the
ACM, 17(11):643–644, 1974.

[Gonthier, 2008] Georges Gonthier. Formal proof—the four-
color theorem. Notices of the AMS, 55(11):1382–1393,
Dec 2008.

[Lamport, 2012] Leslie Lamport. How to write a 21st cen-
tury proof. Journal of Fixed Point Theory and Applica-
tions, 11(1):43–63, Mar 2012.

[Paulin-Mohring, 1993] Christine Paulin-Mohring. Induc-
tive definitions in the system coq rules and properties. In
Typed Lambda Calculi and Applications, pages 328–345,
Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

http://www-verimag.imag.fr/~altisen/PADEC/
http://www-verimag.imag.fr/~altisen/PADEC/
https://coq.inria.fr/refman/

	Introduction
	Preparatory work
	Preparatory study: the Ring case
	Functional constraints
	Coq-related technicality

	Definition of a Tree Topology
	Construction of the nodes
	Relations between the nodes
	Validation of the theory

	Discussion about the model
	Conclusion

